Unconditionally converging polynomials on Banach spaces
نویسندگان
چکیده
منابع مشابه
Unconditionally converging polynomials on Banach spaces
We prove that weakly unconditionally Cauchy (w.u.C.) series and unconditionally converging (u.c.) series are preserved under the action of polynomials or holomorphic functions on Banach spaces, with natural restrictions in the latter case. Thus it is natural to introduce the unconditionally converging polynomials, defined as polynomials taking w.u.C. series into u.c. series, and analogously, th...
متن کاملOn Unconditionally Saturated Banach Spaces
We prove a structural property of the class of unconditionally saturated separable Banach spaces. We show, in particular, that for every analytic set A, in the Effros-Borel space of subspaces of C[0, 1], of unconditionally saturated separable Banach spaces, there exists an unconditionally saturated Banach space Y , with a Schauder basis, that contains isomorphic copies of every space X in the c...
متن کامل0 Orlicz - Pettis Polynomials on Banach Spaces
We introduce the class of Orlicz-Pettis polynomials between Banach spaces, defined by their action on weakly unconditionally Cauchy series. We give a number of equivalent definitions, examples and counterexamples which highlight the differences between these polynomials and the corresponding linear operators.
متن کاملPolynomials on Banach Spaces with Unconditional Bases
We study the classes of homogeneous polynomials on a Banach space with unconditional Schauder basis that have unconditionally convergent monomial expansions relative to this basis. We extend some results of Matos, and we show that the homogeneous polynomials with unconditionally convergent expansions coincide with the polynomials that are regular with respect to the Banach lattices structure of...
متن کاملPolynomials and Identities on Real Banach Spaces
In our present paper we study the duality theory and linear identities for real polynomials and functions on Banach spaces, which allows for a unified treatment and generalization of some classical results in the area. The basic idea is to exploit point evaluations of polynomials, as e.g. in [Rez93]. As a by-product we also obtain a curious generalization of the well-known Hilbert lemma on the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Proceedings of the Cambridge Philosophical Society
سال: 1995
ISSN: 0305-0041,1469-8064
DOI: 10.1017/s030500410007314x